Skip to content
Home » Cartesian Plane

Cartesian Plane

    Cartesian plane is a two dimensional co-ordinate system. This system has two axis – the x-axis and the y-axis. The center of the Cartesian plane is called the origin.

    The x-axis and the y-axis divide the plane into 4 different quadrants as shown in the figure above. The axis are real number line with 0 at the origin.

    Cartesian Plane Quadrants

    Any point on the plane is plotted in terms of horizontal distance on x-axis and vertical distance on y-axis.

    p = (x, y)

    where is distance on x-axis and is distance on y-axis.

    Example: Plot a point for .

    Solution:

    \begin{aligned}&if \hspace{2px} p = (3, 5) \hspace{2px} then\\ \\
    &x = 3\\ \\
    &y = 5
    \end{aligned}
    Cartesian Plane – Plotting a Point

    Pythagorean Theorem and Distance Formula

    Pythagorean theorem is used for finding the distance of hypotenuse of a right triangle. The formula is modified to find the distance of two point on the Cartesian plane.

    Pythagorean Theorem and Distance Formula

    The above triangle has three sides – a, b and c, then Pythagorean theorem is given by

    \begin{aligned}
    &a^2 + b^2 = c^2\\ \\
    &c = \sqrt{a^2 + b^2}
    \end{aligned}

    Suppose there are two points on the Cartesian plane.

    \begin{aligned}
    &p(x_1, y_1) = (2, 4)\\ \\
    &q(x_2, y_2) = (2. 2)
    \end{aligned}

    and we have to find the distance between them.

    Using Pythagorean theorem, we get

    a = | y2 – y1 | = length of a

    b = | x2 – x1 | = length of b

    Therefore,

    Distance formula for two points is

    \begin{aligned}
    &d = \sqrt{(|x2 - x1|)^2 +(|y2 - y1|)^2}\\ \\\
    &d = \sqrt{(|2 - 2|)^2 +(|2 - 4|)^2}\\ \\
    &d = \sqrt{(0)^2 + (-2)^2}\\ \\
    &d = 2
    \end{aligned}
    Distance between Points

    The above diagram verify the results and it shows that the distance is actually 2 units. Hence, the distance formula is correct and applies to the Cartesian plane.

    Exit mobile version