In this article, you will learn about distance formula , midpoint , and equations of circle. The circle is a geometric shape that has a special significance in mathematics. To study the circle, in algebraic form, we need to define it in terms of coordinates in a 2d coordinate system also known as Cartesian coordinate system.
Coordinate System
You are familiar with the 2d coordinate system already from previous articles. The 2d coordinate system define an point in terms of an ordered pair
In the figure 1 above, the point
Distance Formula
The distance formula is derived from Pythagorean theorem to find the distance between two points in the coordinate system. Suppose that
The distance between point
The distance
\begin{aligned} &d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2\\ \\ &Take \hspace{2mm} square \hspace{2mm} root \hspace{2mm} of \hspace{2mm} both\hspace{2mm} sides. \\ \\ &\sqrt{d^2}= \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ \\ &d =\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \end{aligned}
The distance formula is
Note that the length
Example #1
Find the distance between point
Solution:
Solution:
\begin{aligned} &Let \hspace{1mm} x_1 = -4 \hspace{1mm} and \hspace{1mm} y_1 = 7,\hspace{1mm}\\ &also \hspace{1mm}x_2 = 1 \hspace{1mm}and\hspace{1mm} y_2 = 2. \hspace{1mm}Then, \\ &(-4) - 1| = |-5| = 5 \hspace{1mm} and \hspace{1mm} |7-2| = |5| = 5 \end{aligned}
The distance between
\begin{aligned} &d = \sqrt{5^2 + 5^2}\\ \\ &d = \sqrt{50}\\ \\ &d = \sqrt{25 \cdot 2}\\ \\ &d = \sqrt{25} \cdot \sqrt{2} \hspace{1cm} By Rule \sqrt{ab} = \sqrt{a} \cdot \sqrt{b}, {a,b} > 0\\ \\ &d = 5\sqrt{2} \end{aligned}
Mid-Point Formula
Given any two point on the
Then the mid-point formula is given as
\begin{aligned} M(x, y) = \left( \frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2}\right ) \end{aligned}
Example #2
Find the mid-point
Solution:
We can easily find the mid-point
\begin{aligned} &Let \hspace{2mm} x_1 = 2, \hspace{2mm} and \hspace{2mm} x_2 = 6\\ \\ &Similarly, \\ \\ &y_1 = 6,\hspace{2mm} and \hspace{2mm} y_2 = 10\\ \\ &Using \hspace{2mm} mid-point \hspace{2mm} formula, \hspace{2mm} get \\ \\ &M(x, y) = \frac{2 + 6}{2}, \frac{6 + 10}{2}\\ \\ &=\frac{8}{2},\frac{16}{2}\\ \\ &=(4,8) \end{aligned}
Therefore, the mid-point
Standard Equation of Circle
A circle on the
Consider the circle in figure 5, with radius
\begin{aligned} &r = \sqrt{(x-h)^2 + (y - k)^2}\\ \end{aligned}
This is the standard equation of a circle with center at
Circle With Center At The Origin
In the co-ordinate system, the origin is point
\begin{aligned} &r = \sqrt{(x - 0)^2 + (y - 0)^2}\\ \\ &r = \sqrt{x^2 + y^2}\\ \\ &or\\ \\ &r^2 = x^2 + y^2 \end{aligned}
Example #3
Find the radius of a circle whose center is at
Solution:
Given center
\begin{aligned} &r = \sqrt{(x-h)^2 + (y - k)^2}\\ \\ &r = \sqrt{(7-1)^2 + (10-2)^2} \\ \\ &r = \sqrt{6^2 + 8^2}\\ \\ &r = \sqrt{36 + 64}\\ \\ &r = \sqrt{100} \\ \\ &r = 10 \hspace{2mm} \end{aligned}
Therefore, the length of radius is
Example #4
Find the center
Solution:
We are given the value of radius
\begin{aligned} &r = \sqrt{(x-h)^2 + (y-k)^2}\\ \\ &5= \sqrt{(6 - h)^2 + (8-k)^2}\\ \\ &But, \hspace{2mm} k = h + 1 \\ \\ &5= \sqrt{(6 - h)^2 + (8-(h+1))^2}\\ \\ &5 = \sqrt{(6 - h)^2+ (7 - h)^2)}\\ \\ &5 = \sqrt{36 - 12h + h^2 + 49 - 14h + h^2}\\ \\ &5 = \sqrt{85 - 26h + 2h^2 }\\ \\ &Square \hspace{2mm} both\hspace{2mm} sides \\ \\ &25 = 85 - 26h + 2h^2 \\ \\ &2h^2 - 26h + 85 - 25 = 0\\ \\ &2h^2 - 26h + 60 = 0\\ \\ &h^2 - 13h + 30 = 0 \\ \\ &(h - 3) (h - 10) = 0\\ \\ &By \hspace{2mm} zero\hspace{2mm} product \hspace{2mm} property\\ \\ &\therefore x = 3 \hspace{2mm} or \hspace{2mm} x = 10 \end{aligned}
We try to use the value of
\begin{aligned} &5 = \sqrt{(6-3)^2+(8-4)^2}\\ \\ &5 = \sqrt{3^2 +4^2 } \hspace{1cm} \because k = h + 1 = 3 + 1 = 4\\ \\ &5 = \sqrt{9 + 16}\\ \\ &5 = \sqrt{25 }\\ \\ &\therefore 5 = 5 \end{aligned}
General Equation Of Circle
Suppose a circle has center at
\begin{aligned} &r^2 = (x - h)^2 + (y - k)^2\\ \\ &r^2 = (x - 3)^2 + (y - 7)^2\\ \\ &r^2 = x^2 - 6x + 9 + y^2 - 14y + 49\\ \\ &r^2 = x^2 + y^2 - 6x - 14y + 58 \end{aligned}
Therefore, the general equation of circle is
Example #5
Given the general equation of circle
Solution:
Given general equation of circle. We will solve it step-by-step. First group the similar variables together and move constant to the right side of the equation.
\begin{aligned}x^2 - 6x + y^2 -14y = - 58\end{aligned}
Now solve for
[\begin{aligned}(x^2 - 6x + 9 ) + (y^2 - 14y + 49) = - 58 + 9 + 49\end{aligned}
The equation is in standard form and we can find the value of
[\begin{aligned}(x - 3)^2 + (y - 7)^2 = 0^2\end{aligned}
The center of the circle is at