In the previous article, you learned about inverse of matrix and why it is important. You will learn how to find inverse of a matrix in this article. There are two primary method of finding inverse of any square invertible matrix – Classical adjoint method and Gauss -Jordan elimination method.
Methods To Find Inverse Of Matrix
The primary method of finding of inverse of matrix are
- Classical adjoint method
- Gauss-Jordan elimination method
Throughout this article, we will discuss about these two methods in detail.
Classical Adjoint Method
If
But,before we begin you must understand a few terminologies.
Determinant – It is a special number obtained from a square matrix, non-square matrix do not have determinants. If
\begin{aligned} &A = \begin{bmatrix}a & b\\c & d\end{bmatrix}\\\\ &det(A) \hspace{5px} or \hspace{5px}\begin{vmatrix}A\end{vmatrix} \hspace{5px} or \hspace{5px}\begin{vmatrix}a & b\\c & d\end{vmatrix}\\\\ &det(A)= ad - bc \end{aligned}
Minor of a matrix – The minor of a square matrix is determinant obtained by deleting a row and a column from the determinant of a larger square matrix. It is denoted by
The determinant of 2 x 2 matrix.
\begin{aligned} &det(A) =\begin{vmatrix}a & b\\c & d\end{vmatrix}\\\\ &M_{11} = \begin{vmatrix}a & b\\c & d\end{vmatrix} = \begin{vmatrix}d\end{vmatrix}= d\\\\ &M_{12} = \begin{vmatrix}a & b\\c & d\end{vmatrix} = \begin{vmatrix}c\end{vmatrix}= c\\\\ &M_{21} = \begin{vmatrix}a & b\\c & d\end{vmatrix} = \begin{vmatrix}b\end{vmatrix}= b\\\\ &M_{22} = \begin{vmatrix}a & b\\c & d\end{vmatrix} = \begin{vmatrix}a\end{vmatrix}= a\\\\ \end{aligned}
You get following matrix of determinant.
= \begin{bmatrix}d & c\\b & a\end{bmatrix}
Cofactor of a Matrix – The cofactor of a matrix can be found from determinant of minors by assigning appropriate negative or positive signs. Each cofactor
\begin{aligned} &A_{ij}= (-1)^{i+j}M_{ij}\\\\ &A_{11}= (-1)^2 \times det(d) = d\\\\ &A_{12}= (-1)^3 \times det(c) = -c\\\\ &A_{21}= (-1)^3 \times det(b) = -b\\\\ &A_{22}= (-1)^4 \times det(a) = a \end{aligned}
Adjoint of a Matrix – The adjoint of a matrix is obtained by transposing the co-factor matrix. It is denoted as
\begin{aligned} adj A = \left(A_{ij}\right)^T = \begin{bmatrix}d & -b\\-c & a\end{bmatrix} \end{aligned}
Finding Inverse Of Matrix Through Adjoint Method
The process of finding inverse of matrix using adjoint method is as follows.
- Find the matrix of minors
- Find the matrix of co-factors
- Find the determinant det(A) by multiplying first row of matrix A with first row of co-factor matrix of A.
- Find the adjoint matrix usign co-factor matrix of A.
- Multiply 1/det(A) with adjoint of A (adj A) to get the inverse matrix of A.
We will find inverse of a matrix using the adjoint of matrix in the next section. First we must find the inverse of
Example #1 : Find the inverse of
A = \begin{bmatrix}3\end{bmatrix}
Solution:
Step 1: There is no minor for 1×1 matrix.
Step 2: There is no cofactor for 1×1 matrix.
Step 3: The determinant of A is
Step 4: The adjoint of matrix A is
To compute the inverse of matrix A use
\begin{aligned} &A^{-1} = 1/det(A) \times \begin{bmatrix}1\end{bmatrix}\\\\ &A^{-1} = 1/3 \times \begin{bmatrix}1\end{bmatrix}\\\\ &A^{-1} = 1/3 \end{aligned}
Example #2 : Find the inverse of
B = \begin{bmatrix}2 & 1\\3 & 7\end{bmatrix}
Solution:
Let
Step 1: The minors of matrix
\begin{aligned} &M_{11} = \begin{vmatrix}7\end{vmatrix}= 7\\\\ &M_{12} = \begin{vmatrix}3\end{vmatrix}= 3\\\\ &M_{21} = \begin{vmatrix}1\end{vmatrix}= 1\\\\ &M_{22} = \begin{vmatrix}2\end{vmatrix}= 2 \end{aligned}
The minor matrix is,
Step 2: The cofactor of matrix
\begin{aligned} &B_{11} = (-1)^{1+1}M_{11} = 7\\\\ &B_{12} = (-1)^{1+2}M_{12} = -3\\\\ &B_{21} = (-1)^{2+1}M_{21} = -1\\\\ &B_{22} = (-1)^{2+2}M_{22} = 2 \end{aligned}
The cofactor matrix is,
= \begin{bmatrix}7 & -3\\-1 & 2\end{bmatrix}
Step 3: To compute the determinant simply multiply corresponding elements of top row of matrix
Top row of matrix B = 2, 1
Top row of cofactor matrix = 7 -3
det(B) = 2 \times 7 + 1 \times (-3) = 14 - 3 = 11
Step 4: Find the adjoint of the matrix
\begin{aligned} &cofactor \hspace{1ex} of \hspace{1ex} B = \begin{bmatrix}7 & -3\\-1 & 2\end{bmatrix}\\\\ &adj B = \begin{bmatrix}B_{ij}\end{bmatrix}^T\\\\ &adj B = \begin{bmatrix}7 & -1\\-3 & 2\end{bmatrix} \end{aligned}
To find the inverse of matrix
\begin{aligned} &B^{-1} = 1/11 \times \begin{bmatrix}7 & -1\\-3 & 2\end{bmatrix}\\\\ &B^{-1} = \begin{bmatrix}7/11 & -1/11\\-3/11& 2/11\end{bmatrix} \end{aligned}
Verify the inverse of matrix
\begin{aligned} &BB^{-1} = B^{-1}B = I\\\\ &= \begin{bmatrix}2 & 1\\3 & 7\end{bmatrix} \times \begin{bmatrix}7/11 & -1/11\\-3/11& 2/11\end{bmatrix}\\\\ &= \begin{bmatrix}14/11 + -3/11& -2/11+ 2/11\\21/11 + -21/11& -3/11+ 14/11\end{bmatrix}\\\\ &= \begin{bmatrix}11/11&0\\0&11/11\end{bmatrix}\\\\ &= \begin{bmatrix}1&0\\0&1\end{bmatrix} \end{aligned}
Example #3 : Find the inverse of 3 x 3 matrix using the adjoint method.
A = \begin{bmatrix}1 & -2 & 1\\6 & 2 & 3\\2 & 1 & 4\end{bmatrix}
Solution :
Given the matrix
A = \begin{bmatrix}1 & -2 & 1\\6 & 2 & 3\\2 & 1 & 4\end{bmatrix}
Step 1: Find the minors of the matrix
\begin{aligned} &M_{11} = \begin{vmatrix}a_{22}.a_{33}-a_{23}.a_{32}\end{vmatrix} = \begin{vmatrix}8 - 3\end{vmatrix} = 5\\\\ &M_{12} = \begin{vmatrix}a_{21}.a_{33}-a_{23}.a_{31}\end{vmatrix} = \begin{vmatrix}24 - 6 \end{vmatrix}= 18\\\\ &M_{13} = \begin{vmatrix}a_{21}.a_{32}-a_{22}.a_{31}\end{vmatrix} = \begin{vmatrix}6 - 4\end{vmatrix} = 2\\\\ &M_{21} = \begin{vmatrix}a_{12}.a_{33}-a_{13}.a_{32}\end{vmatrix} = \begin{vmatrix}-8 - 1\end{vmatrix} = -9\\\\ &M_{22} = \begin{vmatrix}a_{11}.a_{33}-a_{13}.a_{31}\end{vmatrix} = \begin{vmatrix}4 - 2\end{vmatrix} = 2\\\\ &M_{23} = \begin{vmatrix}a_{11}.a_{32}-a_{12}.a_{31}\end{vmatrix} = \begin{vmatrix}1 + 4 \end{vmatrix}= 5\\\\ &M_{31} = \begin{vmatrix}a_{12}.a_{23}-a_{13}.a_{22}\end{vmatrix} = \begin{vmatrix}-6 - 2\end{vmatrix} = -8\\\\ &M_{32} = \begin{vmatrix}a_{11}.a_{23}-a_{13}.a_{21}\end{vmatrix} = \begin{vmatrix}3 - 6\end{vmatrix} = -3\\\\ &M_{33} = \begin{vmatrix}a_{11}.a_{22}-a_{12}.a_{21}\end{vmatrix} = \begin{vmatrix}2 + 12\end{vmatrix} = 14 \end{aligned}
We have the following matrix of minors.
\begin{bmatrix}5 & 18 & 2\\-9 & 2 & 5\\-8 & -3 & 14\end{bmatrix}
Step 2: Find the cofactors of matrix
We can use the matrix of minors to find the matrix of cofactors.
\begin{aligned} &A_{11} = (-1)^2 . 5 = 5\\ &A_{12} = (-1)^3 . 18 = -18\\ &A_{13} = (-1)^4 . 2 = 2\\\\ &A_{21} = (-1)^3 . -9 = 9\\ &A_{22} = (-1)^4 . 2 = 2\\ &A_{23} = (-1)^5 . 5 = -5\\\\ &A_{31} = (-1)^4 . -8 = -8\\ &A_{32} = (-1)^5 . -3 = 3\\ &A_{33} = (-1)^4 . 14 = 14 \end{aligned}
We get the cofactor matrix of
= \begin{bmatrix}5 & -18 & 2\\9 & 2 & -5\\-8 & 3 & 14\end{bmatrix}
Step 3: Find determinant of the matrix
Top row of matrix A = 1, -2, 1
Top row of coactor of A = 5, -18, 2
det(A) = (1)(5)+ (-2)(-18) + (1)(2) = 5 + 36 + 2 = 43
Step 4: Find the adjoint of matrix
\begin{aligned} &Adj A = \begin{bmatrix}A_{ij}\end{bmatrix}^T = \begin{bmatrix} 5 & -18 & 2\\9 & 2 & -5\\-8 & 3 & 14\end{bmatrix}^T\\\\ &Adj A = \begin{bmatrix} 5 & 9 & -8\\-18& 2 & 3\\2 & -5 & 14\end{bmatrix} \end{aligned}
Step 5: Find the inverse of matrix
\begin{aligned} &A^{-1} = 1/det(A) \times Adj A\\\\ &A^{-1} = 1/43 \times \begin{bmatrix} 5 & 9 & -8\\-18& 2 & 3\\2 & -5 & 14\end{bmatrix}\\\\ &A^{-1} = \begin{bmatrix}5/43& 9/43& -8/ 43\\-18/43& 2/43& 3/43\\2/43& -5/43&14/43\end{bmatrix} \end{aligned}
Verify that
Verify results:
\begin{aligned} &= \begin{bmatrix}1 & -2 & 1\\6 & 2 & 3\\2 & 1 & 4\end{bmatrix} \times \begin{bmatrix}5/43&9/ 43& -8/ 43\\-18/43& 2/43& 3/43\\2/43& -5/43&14/43\end{bmatrix}\\\\ & = \begin{bmatrix}5/43+ 36/43+2/43& 9/43 +( -4)/43 + (-5)/43& -8/43+ 6/43+14/43\\30/43+( -36)/43+ 6/43& 54/43+4/43+ (-15)/43& -48/43+6/43+42/43\\10/43+(-18)/43+ 8/43&18/43+2/43+ (-20)/43& -16/43+3/43+56/43\end{bmatrix}\\\\ & =\begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\1 & 0 & 0\end{bmatrix} \end{aligned}
Finding Inverse of Matrix Using Gauss-Jordan Elimination Method
The Gauss-Jordan elimination method convert a matrix into reduced-row echelon form to find the value of solution vector
Row Operations
The Gauss-Jordan technique involves row operations on augmented matrix
These row operations are
- Multiply a row
with scalar where . - Interchange row
with row . - Addition of
times row to row .
Example #5 : Row operations
Let
A = \begin{bmatrix}1 & 3\\2 & 1\end{bmatrix}
Multiply a row 1 with 3.
R_1 \times 3 = \begin{bmatrix}3 & 9\\2 & 1\end{bmatrix}
Interchange row 2 with row 1.
R_2 \Leftrightarrow R_1 = \begin{bmatrix}2 & 1\\3 & 9\end{bmatrix}
Add 2 times row 1 to row 2.
2R_1 + R_2 = \begin{bmatrix}2 & 1\\7 & 11\end{bmatrix}
Elementary Matrix
An elementary matrix
Suppose A is a matrix of order
Example #6 : Elementary Matrix
Suppose
A = \begin{bmatrix}1 & 5 & 8\\2 & 1 & 3\\0 & 1 & 6\end{bmatrix}
Let
Let \hspace{5px} E = \begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\2 & 0 & 1\end{bmatrix}
Let us perform
= \begin{bmatrix}1 & 5 & 8\\2 & 1 & 3\\2 & 11 & 22\end{bmatrix} \hspace{5px} (1)
Now, let us find
\begin{aligned} &EA = \begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\2 & 0 & 1\end{bmatrix} \times \begin{bmatrix}1 & 5 & 8\\2 & 1 & 3\\0 & 1 & 6\end{bmatrix}\\\\ &EA = \begin{bmatrix}1+0+0 & 5+0+0 & 8+0+0\\0+2+0 & 0+1+0 & 0+3+0\\2+0+0 & 10+0+1 & 16+0+6\end{bmatrix}\\\\ &EA = \begin{bmatrix}1 & 5 & 8\\2 & 1 & 3\\2 & 11 & 22\end{bmatrix}\hspace{5px} (2) \end{aligned}
Therefore, (1) and (2) are same.
Inverse Operations
If matrix
For every elementary row operation, there is an equivalent inverse operation. Check the table below.
Elementary Row Operation | Inverse Operation |
Multiply row i by c where c != 0 | Multiply row i by 1/c |
Interchange row i with row j | Interchange row j with row i |
Add k times row i to row j | Add -k times row i to row j |
Example #7 : Inverse Operations
Multiply row
\begin{aligned} &E = k \times R_1 = 3 \times \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}\\\\ &E = \begin{bmatrix}3 & 0\\0 & 1\end{bmatrix} \end{aligned}
Multiply row
\begin{aligned} &1/3 \times R_1 = 1/3\times \begin{bmatrix}3 & 0\\0 & 1\end{bmatrix}\\\\ &I = \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix} \end{aligned}
From the above we can conclude that
1. Some operation on
2. The inverse of previous operation on E will give back
3. Inverse operation on
E.E^{-1} = E^{-1}.E = I
Note that
4 Necessary Statements For Gauss-Jordan technique and inverses
Before we find inverse of a matrix
If matrix
- Matrix
is invertible meaning the determinant is greater than 0 and does not have a zero row. has only trivial solution.- The matrix
is reduced to reduced-row echelon form which is identity matrix . This is because has trivial solution only, which means has one solution for every .
\begin{bmatrix}x_1& 0& 0& 0 & b_1\\0& x_2&0 & 0& b_2\\0 & 0& x_3 & 0 & b_3\\0& 0& 0 & x_n & b_n\end{bmatrix}
- The matrix
is product of elementary matrices.
Multiplying A with elementary matrices is same as performing row operations on A which will reduce the matrix to identity matrix
E_1E_2 ... E_n A = I_n
Similarly, each of the
A = E^{-1}_1 . E^{-1}_2 ...E^{-1}_n
Also,
A^{-1} = E_1.E_2 ... E_n.I
Therefore, the matrix
Example #8: Find the inverse of following
(A|I) = \left(\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0\\6 & 2 & 3 & 0 & 1 & 0\\2 & 1 & 4 & 0 & 0 & 1\end{array} \right)
Solution:
Given the matrix
(A|I) = \left(\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0\\6 & 2 & 3 & 0 & 1 & 0\\2 & 1 & 4 & 0 & 0 & 1\end{array} \right)
Step 1:
= \left(\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0\\6 & 2 & 3 & 0 & 1 & 0\\0 & 5 & 2 & -2 & 0 & 1\end{array} \right)
Step 2:
= \left(\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0\\0 & 14 & -3 & -6 & 1 & 0\\0 & 5 & 2 & -2 & 0 & 1\end{array}\right)
Step 3:
= \left(\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0\\0 & 1 & -3/14 & -6/14 & 1/14 & 0\\0 & 5 & 2 & -2 & 0 & 1\end{array}\right)
Step 4:
= \left(\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0\\0 & 1 & -3/14 & -6/14 & 1/14& 0\\0 & 0 & 43/14&2/14& -5/14 & 1\end{array}\right)
Step 5:
= \left(\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0\\0 & 1 & -3/14 & -6/14&1/14& 0\\0 & 0 & 1 & 2/43 &-5/ 43 &14/43\end{array}\right)
Step 6:
= \left(\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0\\0 & 1 & 0 & -18/43& 2/43 & 3/43\\0 & 0 & 1 & 2/43 & -5/43&14/43\end{array}\right)
Step 7:
= \left(\begin{array}{ccc|ccc}1& 0 & 0 & 7/43& 4/43&6/43\\0 & 1 & 0 &-18/43&2/43& 3/43\\0 & 0 & 1 & 2/43 & -5/43&14/43\end{array}\right)
Step 8:
(I|A^{-1})= \left(\begin{array}{ccc|ccc}1& 0 & 0 & 5/43 &9/43&-8/43\\0 & 1 & 0 & -18/43&2/43 &3/43\\0 & 0 & 1 & 2/43& -5/43 &14/43\end{array}\right)
The matrix
The verification of resultant inverse matrix is left as an exercise for you.