In linear algebra, matrix inverse holds a special place because there is no division in matrix algebra. You cannot divide two matrices. Fortunately, the division is possible when a matrix is multiplied with its inverse which is unique.
The inverse is not possible with just any kind of matrix, a matrix must be square and invertible and the reasons are explained in this article along with several identities and examples involving inverse matrices.
An inverse matrix can also be used for finding the solution for system of linear equations, that is,
What Is The Need For Inverse?
Inverse means opposite of some operation performed and the result obtained is identity of that operation.
For example,
Additive Identity
If
But,
Therefore, subtraction is inverse operation of addition.
Multiplicative Identity
If
But,
Therefore, multiplying with reciprocal or division is inverse operation of multiplication.
The same idea can be extended to matrix since we are unable to divide two matrices directly. If
\begin{aligned} A.A^{-1} = A^{-1}.A = I \end{aligned}
For example,
Let
\begin{aligned} &A = \begin{bmatrix} 2 & 1\\ 2 & 6\end{bmatrix} \end{aligned}
Computer the determinant.
\begin{aligned} &Det(A) = 2\times 6 - 1 \times 2 = 12 - 2 = 10 \end{aligned}
Add negative to following elements in matrix
\begin{aligned} A = \begin{bmatrix} 2 & 1\\ 2 & 6\end{bmatrix} = \begin{bmatrix} + & -\\ - & +\end{bmatrix} = \begin{bmatrix} 2 & -1\\ -2 & 6\end{bmatrix} \end{aligned}
Swap positive entries.
\begin{aligned} &\begin{bmatrix} 2 & -1\\ -2 & 6\end{bmatrix} = \begin{bmatrix} 6 & -1\\ -2 & 2\end{bmatrix} \end{aligned}
Multiply the above result with
\begin{aligned} &A^{-1} = \frac{1}{10}\begin{bmatrix} 6 & -1\\ -2 & 2\end{bmatrix}\\\\ &= \begin{bmatrix} 3/5 & -1/10\\-1/5 & -1/5\end{bmatrix} \end{aligned}
Let us now verify whether
\begin{aligned} &\begin{bmatrix} 2 & 1\\ 2 & 6\end{bmatrix} \times \begin{bmatrix} 3/5 & -1/10\\ -1/5 & -1/5\end{bmatrix}\\\\ &= \begin{bmatrix} 6/5 - 1/5 & -1/5+ 1/5\\ 6/5 - 6/5& -1/5+ 6/5\end{bmatrix}\\\\ &= \begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix} \end{aligned}
Why Square Matrix ?
The inverse deals with negative power such as
The second reason for using square matrix is the identity matrix. An identity matrix is a square matrix only. A product of non-square matrix with its inverse will not result in an identity matrix.
If a square matrix
\begin{aligned} &AB = BA = I \end{aligned}
Then the matrix
A matrix is singular and has no inverse if its determinant is 0. You will learn about determinants in future lessons.
Suppose
\begin{aligned} &A = \begin{bmatrix}a & b\\c & d\end{bmatrix}\\\\ &ad - bc = 0 \end{aligned}
In the same manner, determinants of higher order matrices is found.
Therefore, only square matrix is used to find inverse which is also a square matrix of size
Uniqueness Of Inverse Matrix
If a square matrix
Proof :
Suppose that there are two inverse
\begin{aligned} &AB = BA = I - (1)\\\\ &AC = CA = I - (2) \end{aligned}
We know that any matrix multiplied by Identity matrix will result itself. Therefore, the following is true.
\begin{aligned} &B = B.I\\\\ &B = B(AC) \hspace{5px}by \hspace{5px}(2)\\\\ &B = (BA)C \hspace{5px}by \hspace{5px}associativity \hspace{5px}property\\\\ &B = I.C \hspace{5px}by \hspace{5px}(1)\\\\ &B = C\\\\ \end{aligned}
Use Of Inverse Matrix
The purpose of using matrix is to solve for
\begin{aligned} A.x = b => \begin{bmatrix}a & b\\c & d\end{bmatrix}.\begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}b_1 \\ b_2\end{bmatrix} \end{aligned}
Multiply both sides by
\begin{aligned} &(A^{-1}A)x = A^{-1}b\\\\ &By \hspace{5px} A^{-1}A = AA^{-1} = I, \hspace{5px}we\hspace{5px} get \\\\ &Ix = A^{-1}b => x = A^{-1}b\\\\ \end{aligned}
Let us try to solve a system of equation using above result where
\begin{aligned} &2x + 4y = 10\\\\ &3x + 2y = 7 \end{aligned}
Let
\begin{aligned} &A.x = b\\\\ &\begin{bmatrix}2 & 4\\3 & 2\end{bmatrix} . \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}10 \\ 7\end{bmatrix} \end{aligned}
Let us find the inverse of matrix
\begin{aligned} Det(A) = ad - bc = 4 - 12 = -8 \end{aligned}
Change the sign and swap the positive entries. Then multiply it with
\begin{aligned} \begin{bmatrix}2 & 4\\3 & 2\end{bmatrix} = \begin{bmatrix}+ & -\\- & +\end{bmatrix} = \begin{bmatrix}2 & -4\\-3 & 2\end{bmatrix}\\\\ \end{aligned}
Swap the positive entries.
\begin{aligned} &\begin{bmatrix}2 & -4\\-3 & 2\end{bmatrix} = \begin{bmatrix}2 & -4\\-3 & 2\end{bmatrix}\\\\ \end{aligned}
Multiply with
\begin{aligned} &= \frac{ 1}{-8} \times \begin{bmatrix}2 & -4\\-3 & 2\end{bmatrix}\\\\ &A^{-1} = \begin{bmatrix}-1/4& 1/2\\3/8 & -1/4\end{bmatrix} \end{aligned}
We need to verify if this is correct inverse .
\begin{aligned} &A = \begin{bmatrix}-1/4& 1/2\\3/8&-1/4\end{bmatrix} . \begin{bmatrix}2 & 4\\3 & 2\end{bmatrix}= I\\\\ &= \begin{bmatrix}1/2+ 3/2& -1 + 1\\3/4+ (-3/4 )& 3/2+ (-1/2)\end{bmatrix}\\\\ &= \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix} \end{aligned}
The inverse is correct and compute the value of solution vector
x = A^{-1}. b
Where,
A^{-1} = \begin{bmatrix}-1/4 & 1/2\\3/8 & -1/4\end{bmatrix} \hspace{4px} b = \begin{bmatrix}10 \\ 7\end{bmatrix}
Where,
\begin{aligned} &A^{-1} = \begin{bmatrix}-1/4 & 1/2 \\ 3/8 & -1/4\end{bmatrix} \hspace{5px} b = \begin{bmatrix}10 \\ 7\end{bmatrix}\\\\ &x = \begin{bmatrix}-10/4+ 7/2\\ 30/8+ (-7/ 4) \end{bmatrix}\\\\ &x = \begin{bmatrix}-5/2+7/2\\15/4+(-7/4)\end{bmatrix}\\\\ &x = \begin{bmatrix}1 \\ 2\end{bmatrix} \end{aligned}
We must verify the solution by substitution in the system of linear equations.
\begin{aligned} &2(1) + 4(2) = 10\\\\ &3(1) + 2(2) = 7 \end{aligned}
Similarly, we can verify some other interesting results in the following section.
Other Interesting Results
In this section, we will verify some other interesting results concerning inverse matrices.
(a) Product of two or more invertible matrices are invertible matrix.
\begin{aligned}\ (AB)^{-1} = B^-1A^{-1} \hspace{5px} //order \hspace{5px}is \hspace{5px}important \end{aligned}
Proof:
Let
Therefore,
\begin{aligned} &PP^{-1} = P^{-1}P = I_n\\\\ &(AB)(B^{-1}A^{-1})\\\\ &= A(BB^{-1})A^{-1} \hspace{5px} //because \hspace{4px}AA^{-1}=I_n\\\\ &= I_nAA^{-1}\\\\ &= I_n \end{aligned}
Example #1
Let
\begin{aligned} &A = \begin{bmatrix} 1 & 5\\0 & 9\end{bmatrix} \hspace{5px}B = \begin{bmatrix}2 & 1\\3 & 4\end{bmatrix} \end{aligned}
Let
\begin{aligned} &C = \begin{bmatrix} 1 & 5\\0 & 9\end{bmatrix}\times \begin{bmatrix}2 & 1\\3 & 4\end{bmatrix}\\\\ &C = \begin{bmatrix}2 + 15 & 1+20 \\0 + 27 & 0 + 36\end{bmatrix}\\\\ &C = \begin{bmatrix}17 & 21\\ 27 & 36\end{bmatrix}\\\\ & \end{aligned}
We will now find the inverse of the product matrix
Det(C) = 17\times36 - 21\times27 = 612 - 567 = 45
Now change value of element
\begin{aligned} &C^{-1} = 1/45 \times \begin{bmatrix}36 & -21\\-27&17\end{bmatrix}\\\\ &C^{-1}= \begin{bmatrix}36/45 & -21/45 \\ -27/45 &17/45\end{bmatrix}\\\\ &C^{-1}= \begin{bmatrix}36/45 & -21/45\\-27/45&17/45\end{bmatrix} \end{aligned}
We must find the product matrix
\begin{aligned} &B^{-1} = \begin{bmatrix}4/5 & -1/5\\ -3/5& 2/5\end{bmatrix}\\\\ &A^{-1} = \begin{bmatrix}1 & -5/9\\ 0 & 1/9\end{bmatrix}\\\\ &B^{-1} \cdot A^{-1} = \begin{bmatrix}4/5 & -1/5\\ -3/5 & 2/5\end{bmatrix} \times \begin{bmatrix}1 & -5/9\\ 0 &1/9\end{bmatrix}\\\\ &B^{-1} \cdot A^{-1} = \begin{bmatrix}4/5 + 0 & -20/45 + -1/45\\ -3/5+0 & 15/45+2/45\end{bmatrix}\\\\ &B^{-1}.A^{-1} = \begin{bmatrix}4/5&-7/15\\ -3/5& 17/45\end{bmatrix} \end{aligned}
Therefore,
(b) Inverse of inverse matrix is the original matrix.
Let
We know that
\begin{aligned} \begin{bmatrix}a\end{bmatrix} \times \begin{bmatrix}1/a\end{bmatrix} = \begin{bmatrix}1\end{bmatrix} \end{aligned}
Therefore,
\begin{aligned} &(A^{-1})^{-1} = (\begin{bmatrix}1/a\end{bmatrix})^{-1}\\\\ &= (\begin{bmatrix}1/a\end{bmatrix})^{-1} = \begin{bmatrix}a\end{bmatrix}\\\\ &= \begin{bmatrix}a\end{bmatrix}= A\\\\ &(A^{-1})^{-1} = A \end{aligned}
Example #2
Let
A = \begin{bmatrix}1 & 2\\ 3 & 9\end{bmatrix}
The inverse of the matrix
\begin{aligned} A^{-1} = \begin{bmatrix}3 &-2/3\\-1 &1/3\end{bmatrix} \end{aligned}
Let us take inverse of inverse matrix A^{-1}.
\begin{aligned} Det(A^{-1}) = 1 - 2/3 = 1/3 \end{aligned}
Change signs and swap positive values in
\begin{aligned} = \begin{bmatrix}1/3&2/3\\1 & 3\end{bmatrix} \end{aligned}
Multily above result with
\begin{aligned} &(A^{-1})^{-1} = 3 \times \begin{bmatrix}1/3& 2/3\\1 & 3\end{bmatrix}\\\\ &(A^{-1})^{-1} = \begin{bmatrix}1 & 2 \\3 & 9\end{bmatrix}= A\\\\ \end{aligned}
Therefore,
(c) If non-negative power of a invertible square matrix
A^{-n} = A^{-1}.A^{-1}.A^{-1}.A^{-1}(n-times)
Example #3
Let
\begin{aligned} &A^3 = \begin{bmatrix}2 & 3 \\ 1 & 5\end{bmatrix} \times \begin{bmatrix}2 & 3 \\ 1 & 5\end{bmatrix} \times \begin{bmatrix}2 & 3 \\ 1 & 5\end{bmatrix}\\\\ &A^3 = \begin{bmatrix}35 & 126 \\ 42 & 161\end{bmatrix} \end{aligned}
Let
\begin{aligned} &A^{-1} = \begin{bmatrix}5/7& -3/7\\ -1/ 7& 2/7\end{bmatrix}\\\\ &A^{-3} = \begin{bmatrix}23/49& -18/49\\ -6/49&5/49\end{bmatrix} \end{aligned}
But we know that
A^3A^{-3} = A^{3-3} = A^0 = I
\begin{aligned} &A^3A^{-3} = \begin{bmatrix}35 & 126 \\ 42 & 161\end{bmatrix} \times \begin{bmatrix}23/49& -18/49\\-6/49&5/49\end{bmatrix}\\\\ &A^3A^{-3} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = I \end{aligned}
Therefore,
(d) If
kA = 1/kA^{-1}
Proof:
We know that
\begin{aligned} &a(bP) = abP (1)\\\\ &aP(Q) = P(aQ) (2)\\\\ &
where
\begin{aligned} (kA)\left(1/k\right) \cdot A^{-1}= I \end{aligned}
Using equation (2)
\begin{aligned} &1/k \cdot k(A)(A^{-1})= I\\\\ &1/k \cdot k \cdot I = I\\\\ &(1) . I = I \end{aligned}
Therefore,
Example #4
Let
A = \begin{bmatrix}3 & 1 \\4 & 2\end{bmatrix} \hspace{5px} A^{-1} = \begin{bmatrix}1 & -1/2 \\-2 & 3/2\end{bmatrix}
Multiply
kA = 2 \times \begin{bmatrix}3 & 1 \\4 & 2\end{bmatrix} = \begin{bmatrix}6 & 2 \\8 & 4\end{bmatrix}
Take determinant of the matrix
Det(A) = 6 \times 4 - 8 \times 2 = 24 - 16 = 8
Let
\begin{aligned} A = \begin{bmatrix}3 & 1 \\4 & 2\end{bmatrix} \hspace{5px} A^{-1} = \begin{bmatrix}1 & -1/2 \\-2 & 3/2\end{bmatrix} \end{aligned}
Multiply
kA = 2 \times \begin{bmatrix}3 & 1 \\4 & 2\end{bmatrix} = \begin{bmatrix}6 & 2 \\8 & 4\end{bmatrix}
Take determinant of the matrix
Det(A) = 6 \times 4 - 8 \times 2 = 24 - 16 = 8
Take negative of
\begin{aligned} (kA)^{-1} = 1/ 8\times \begin{bmatrix}4 & -2 \\-8 & 6\end{bmatrix} = \begin{bmatrix}1/ 2 &-1/4 \\-1 & 3/4\end{bmatrix} \hspace{5px} (3) \end{aligned}
We must compute the value of
\begin{aligned} 1/kA^{-1}= 1/2\times\begin{bmatrix}1 & -1/ 2\\-2 & 3/2\end{bmatrix} = \begin{bmatrix}1/2 & -1/4\\-1 & 3/4\end{bmatrix} \hspace{5px} (4) \end{aligned}
(kA)^{-1} = 1/kA^{-1} \hspace{5px} (5)
(e) If
\left(A^T\right)^{-1}= \left(A^{-1}\right)^{-1}
Example #5
Let
A = \begin{bmatrix}1 & 2\\3 & 8\end{bmatrix} \hspace{5px} A^T = \begin{bmatrix}1 & 3\\2 & 8\end{bmatrix}
Inverse of Transpose
\left(A^T\right)^{-1} = 1/2 \times \begin{bmatrix}8 & -3\\-2 & 1 \end{bmatrix}= \begin{bmatrix}4 & -3/ 2\\-1 & 1/2\end{bmatrix}
Transpose of Inverse
\begin{aligned} &A^{-1} = 1/2 \times \begin{bmatrix}8 & -2\\-3 & 1\end{bmatrix}\\\\ &\left(A^{-1}\right)^{T}= \begin{bmatrix}4 & -1\\ -3/ 2 & 1/2\end{bmatrix}^T\\\\ &\left(A^{-1}\right)^{T}= \begin{bmatrix}4 & -3/2\\-1 &1/2\end{bmatrix} \end{aligned}
Therefore,
In this article, we explained why and what are inverse of matrix. Next, we discuss how to obtain inverse of small to large invertible matrices using different available methods.