The multiplication of matrices means rows of matrix
Conditions for Matrix Multiplication
If
- Row or column of matrix
must be equal to column or row of matrix . - Multiplying matrix
to matrix is not same as multiplying matrix i.e., . - If condition 2 and 3 are true, then we can multiply 2 or more matrices.
Matrix Multiplication
Let
\begin{aligned} &A = \begin{bmatrix}a_{11} & a_{12}& . . . & a_{1n}\end{bmatrix} B = \begin{bmatrix}b_{11} \\ b_{21} \\ : \\ b_{n1}\end{bmatrix}\\\\ &C_{1 \times 1} = A . B = \begin{bmatrix}a_{11}b_{11} + a_{12}b_{21} + ... + a_{1n}b_{n1}\end{bmatrix} \end{aligned}
In the above example,
Now, we consider the second case, where we multiply
\begin{aligned} &B = \begin{bmatrix}b_{11} \\ b_{21} \\ : \\ b_{n1}\end{bmatrix} A = \begin{bmatrix}a_{11} & a_{12}& . . . & a_{1n}\end{bmatrix}\\\\ &C_{n \times n} = A . B = \begin{bmatrix}b_{11}a_{11} & b_{11}a_{12} & ... & b_{11}a_{1n}\\ b_{21}a_{11} & b_{21}a_{11} & ... & b_{21}a_{1n}\\ : & : & : & :\\ b_{n1}a_{11} & b_{n1}a_{12} & ... & b_{n1}a_{1n}\end{bmatrix} \end{aligned}
Matrix Multiplication Examples
In this section, we will show you few examples with different kinds of matrices.
Example #1
\begin{aligned} &// \hspace{5px} Multiplying \hspace{5px} Square \hspace{5px}Matrix\\\\ &A_{2 \times 2} = \begin{bmatrix}2 & 3 \\ 1 & 7\end{bmatrix} B_{2 \times 2} = \begin{bmatrix}2 & 3\\ 1 & 1\end{bmatrix}\\\\ &AB = \begin{bmatrix}(2 * 2)+ (3 * 1) & (2 * 3)+ (3 * 1)\\ (1 * 2) + (7 * 1) & (1 * 3) + ( 7 * 1)\end{bmatrix}\\\\ &AB = \begin{bmatrix}(4)+ (3) & (6)+ (3)\\ (2) + (7) & (3) + (7)\end{bmatrix}\\\\ &AB_{2 \times 2} = \begin{bmatrix}7 & 9\\ 9 & 10\end{bmatrix} \end{aligned}
The size of matrix
Example #2
\begin{aligned} &A_{2 \times 3} = \begin{bmatrix}4 & -1 & 1\\ 4 & 1 & -2\end{bmatrix} B_{3 \times 2} = \begin{bmatrix}2 & -2\\ 1 & -2 \\ 5 & 2\end{bmatrix}\\\\ &AB = \begin{bmatrix}(4 * 2)+ (-1 * 1) + (1 * 5) & (4 * -2)+ (-1 * -2) + (1 * 2)\\ (4 * 2) + (1 * 1) + (-2 * 5) & (4 * -2) + ( 1 * -2) + (-2 * 2)\end{bmatrix}\\\\ &AB = \begin{bmatrix}(8)+ (-1) + (5) & (-8)+ (2) + (2)\\ (8) + (1) + (-10) & (-8) + (-2) + (-4)\end{bmatrix}\\\\ &AB = \begin{bmatrix}12 & -4\\ -1 & -14\end{bmatrix} \end{aligned}
The size of the matrix
Example #3
\begin{aligned} &A_{3 \times 2} = \begin{bmatrix}1 & 1 \\ 3 & 5 \\ 2 & 3\end{bmatrix} B_{2 \times 3} = \begin{bmatrix}3 & 1 & 0\\ 7 & 4 & 1 \end{bmatrix}\\\\ &AB = \begin{bmatrix}(1 * 3)+ (1 * 7) & (1 * 1) + (1 * 4) & (1 * 0) + (1 * 1)\\ (3 * 3)+ (5 * 7) & (3 * 1) + (5 * 4) & (3 * 0) + (5 * 1)\\ (2 * 3)+ (3 * 7) & (2 * 1) + (3 * 4) & (2 * 0) + (3 * 1)\\\end{bmatrix}\\\\ &AB = \begin{bmatrix}(3)+ (7) & (1) + (4) & (0) + (1)\\ (9)+ (35) & (3) + (20) & (0) + (5)\\ (6)+ (21) & (2) + (12) & (0) + (3)\\\end{bmatrix}\\\\ &AB = \begin{bmatrix}10 & 4 & 1\\ 44 & 23 & 5\\ 27 & 14 & 3\end{bmatrix} \end{aligned}
The matrix
Properties of Matrix Multiplication
Since, matrix operation is mathematical operations, therefore, matrix multiplication must preserve all or some of the properties with respect to multiplication operator.
Commutative Law
Suppose we multiply two matrix
\begin{aligned} &A = \begin{bmatrix}2 & 2\\ 3 & 1\end{bmatrix} B = \begin{bmatrix}1 & 2\\ 5 & 2\end{bmatrix}\\\\ &AB = \begin{bmatrix}12 & 8\\ 8 & 8\end{bmatrix}\\\\ &Similarly, \\\\ &B = \begin{bmatrix}1 & 2\\ 5 & 2\end{bmatrix} A = \begin{bmatrix}2 & 2\\ 3 & 1\end{bmatrix}\\\\ &BA = AB = \begin{bmatrix}8 & 4\\ 16 & 12\end{bmatrix}\\\\ &AB \neq BA \end{aligned}
From the example above, it is clear that the product of
Associative Law of Matrix Multiplication
The associative law in matrix multiplication involves more than two matrices in following ways.
Let A, B, and C be three matrices that meet the conditions of matrix multiplication.Then,
\begin{aligned} A * ( B * C ) = (A * B) * C \end{aligned}
We can test the above property with the help of an example. Let
\begin{aligned} &A = \begin{bmatrix}1 & 2\\3 & 4\end{bmatrix} B = \begin{bmatrix}2 & 3\\4 & 5\end{bmatrix} C = \begin{bmatrix}3 & 2\\1 & 1\end{bmatrix}\\\\ &BC = \begin{bmatrix}9 & 7\\17 & 13\end{bmatrix}\\\\ &A * (BC) = \begin{bmatrix}43 & 33\\95 & 73\end{bmatrix}\\\\ &Similarly, \\\\ &AB = \begin{bmatrix}10 & 13\\22 & 29\end{bmatrix}\\\\ &(AB) * C = \begin{bmatrix}43 & 33\\95 & 73\end{bmatrix}\\\\ &Therefore, \\\\ &A * (B * C) = (A * B) * C \end{aligned}
The above example, both side of the equation gives same results. Thus, the associative law is true for matrix multiplication.
Identity Law
In mathematics, an identity element is a value when added element ‘a’ will give ‘a’ itself. We know that identity of addition is 0.
\begin{aligned} &a + 0 = a\\\\ &For \hspace{5px}multiplication,\\\\ &a * 1 = 1 \end{aligned}
Since, 1 is the identity element of multiplication, we need a matrix with main diagonals as 1s, such a matrix is called an identity matrix or unit matrix denoted by
Let A be a square matrix of size 2 x 2 and I be identity matrix of size 2 x 2. Then,
\begin{aligned} &A = \begin{bmatrix}2 & 4\\4 & 6\end{bmatrix} I_{2} = \begin{bmatrix} 1 & 0\\0 & 1\end{bmatrix}\\\\ &A.I_{2} = \begin{bmatrix}2 + 0 & 0 + 4\\4 + 0 & 0 + 6\end{bmatrix}\\\\ &A.I_{2} = \begin{bmatrix}2 & 4\\4 & 6\end{bmatrix} \end{aligned}
The unit matrix when multiplied with matrix
Commutative Property For Identity Law
We mentioned earlier that the commutative property does not apply for matrix multiplication. However, in the case of multiplying a matrix
For example, let us take previous example where we found following results.
\begin{aligned} A.I_{2} = \begin{bmatrix}2 & 4\\4 & 6\end{bmatrix} \end{aligned}
We must find
Let A be a square matrix of size 2 x 2 and I be identity matrix of size 2 x 2. Then
\begin{aligned} &I_{2} = \begin{bmatrix} 1 & 0\\0 & 1\end{bmatrix} A = \begin{bmatrix}2 & 4\\4 & 6\end{bmatrix}\\\\ &I_{2}. A = \begin{bmatrix}2 + 0 & 4 + 0\\0 + 4 & 0 + 6\end{bmatrix}\\\\ &A.I_{2} = \begin{bmatrix}2 & 4\\4 & 6\end{bmatrix} \end{aligned}
Clearly, commutative law is true in the case of matrix multiplication if one of the matrix is identity matrix. You can try to perform the multiplication with more than two matrices. Therefore,
In the next post, we will discuss about taking transpose of a matrix.