The diagonal matrix has diagonal elements only and if the diagonals are 1 then the matrix is called and identity matrix
What is a diagonal matrix ?
A diagonal matrix is a
A = \begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{bmatrix}
The matrix
Some Interesting Properties of Diagonal Matrix
The diagonal matrix have some interesting properties explain in this section with examples.
Addition Or Multiplication of Diagonal Matrices
Addition or multiplication of two or more diagonal matrices of same order will give a diagonal matrix of same order.
Example #1
Let
A = \begin{bmatrix}2 & 0 & 0 \\0 & 7 & 0\\0 & 0 & 4\end{bmatrix} B = \begin{bmatrix}1 & 0 & 0 \\0 & 3 & 0\\0 & 0 & 5\end{bmatrix}
Therefore, adding
A + B = C
C_{3\times3} = \begin{bmatrix}2 + 1 & 0 + 0 & 0 + 0\\0 + 0 & 7 + 3& 0+0\\ 0+0& 0 + 0&4+ 5\end{bmatrix} = \begin{bmatrix}3 & 0 & 0 \\0 & 10 & 0\\0 & 0 & 9\end{bmatrix}_{3\times3}
Example #2
Let
C = \begin{bmatrix}4 & 0\\0 & 3\end{bmatrix}\hspace{5px} D =\begin{bmatrix} 1 & 0\\0 & 6\end{bmatrix}
Therefore, multiplying matrix
C \times D = F
\begin{aligned} F_{2\times2} = \begin{bmatrix}4 + 0 & 0 + 0\\0 + 0&0 + 18\end{bmatrix}= \begin{bmatrix}4 & 0\\0 & 18\end{bmatrix}_{2\times2} \end{aligned}
Multiplication Of Diagonal Matrix With Other Matrices
Let
Example #3
\begin{aligned} &A = \begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{bmatrix}\\\\ &B = \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\\b_{31}&b_{32}\end{bmatrix}\\\\ &A \times B = \begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{bmatrix} \times \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\\b_{31}&b_{32}\end{bmatrix}\\\\ &A \times B = \begin{bmatrix}a_{11}b_{11}&a_{11}b_{12}\\a_{22}b_{21}&a_{22}b_{22}\\a_{33}b_{31}&a_{33}b_{32}\end{bmatrix} \end{aligned}
Each element of diagonal matrix
Example #4
Another case of multiplication is when matrix
Let
C = \begin{bmatrix}c_{11}&c_{12}&c_{13}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\\c_{41}&c_{42}&c_{43}\end{bmatrix}
and
\begin{aligned} &A = \begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{bmatrix}\\\\ &C \times A = \begin{bmatrix}c_{11}&c_{12}&c_{13}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\\c_{41}&c_{42}&c_{43}\end{bmatrix}\times \begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{bmatrix}\\\\ &C \times A = \begin{bmatrix}c_{11}a_{11}+0+0&0+c_{12}a_{22}+0&0+0+c_{13}a_{33}\\c_{21}a_{11}+0+0&0+c_{22}a_{22}+0&0+0+c_{23}a_{33}\\c_{31}a_{11}+0+0&0+c_{32}a_{22}+0&0+0+c_{33}a_{33}\\c_{41}a_{11}+0+0&0+c_{42}a_{22}+0&0+0+c_{43}a_{33}\end{bmatrix}\\\\ &C \times A = \begin{bmatrix}c_{11}a_{11}&c_{12}a_{22}&c_{13}a_{33}\\c_{21}a_{11}&c_{22}a_{22}&c_{23}a_{33}\\c_{31}a_{11}&c_{32}a_{22}&c_{33}a_{33}\\c_{41}a_{11}&0+c_{42}a_{22}&c_{43}a_{33}\end{bmatrix} \end{aligned}
When matrix
Commutative Property of Multiplication in Between Diagonal Matrices
If two matrices
Example #5
Let
A = \begin{bmatrix}3&0&0\\0&4&0\\0&0&5\end{bmatrix}
and
\begin{aligned} &A = \begin{bmatrix}-2&0&0\\0&1&0\\0&0&7\end{bmatrix}\\\\ &A \times B = \begin{bmatrix}3&0&0\\0&4&0\\0&0&5\end{bmatrix} \times \begin{bmatrix}-2&0&0\\0&1&0\\0&0&7\end{bmatrix}\\\\ &A \times B = \begin{bmatrix}-6&0&0\\0&4&0\\0&0&35\end{bmatrix} \end{aligned}
Similarly,
\begin{aligned} &B \times A = \begin{bmatrix}-2&0&0\\0&1&0\\0&0&7\end{bmatrix}\times \begin{bmatrix}3&0&0\\0&4&0\\0&0&5\end{bmatrix}\\\\ &A \times B = \begin{bmatrix}-6&0&0\\0&4&0\\0&0&35\end{bmatrix} \end{aligned}
Therefore,
Diagonal Matrix is Symmetric
If
A = A^T
Example #6
Let
A = \begin{bmatrix}a_{11}&0&0&0\\0&a_{22}&0&0\\0&0&a_{33}&0\\0&0&0&a_{44} \end{bmatrix}
When we take transpose of a matrix, then
\begin{aligned} &A^T = \begin{bmatrix}a_{11}&0&0&0\\0&a_{22}&0&0\\0&0&a_{33}&0\\0&0&0&a_{44} \end{bmatrix} = A\\\\ &A = A^T \end{aligned}
We conclude that the diagonal matrix
Power of Diagonal Matrix
If a diagonal matrix
Example #7
Let
\begin{aligned} &P^3 = \begin{bmatrix}a & 0\\0 & b\end{bmatrix} \times \begin{bmatrix}a & 0\\0 & b\end{bmatrix}\times \begin{bmatrix}a & 0\\0 & d\end{bmatrix}\\\\ &P^3 = \begin{bmatrix}a^3 & 0\\0 & b^3\end{bmatrix} \end{aligned}
Therefore,
P^k = \begin{bmatrix}a^k & 0\\0 & b^k\end{bmatrix}
Invertible Diagonal Matrix
Any matrix is invertible if its determinant is not equal to 0 and it is a square matrix. The diagonal matrix is a square matrix, but it must have a non-zero entry in the main diagonal to be invertible.
If the main diagonal has a zero entry then it is a singular matrix for two reasons
- It is not a square matrix
- It has a zero determinant
Example #8
Let matrix
A = \begin{bmatrix} a & 0 & 0\\0 & b & 0\\0 & 0 & 0\end{bmatrix}
Rule 1: Diagonal matrix must be a square matrix.
The last row of matrix
Rule 2: The determinant of matrix
The minor matrix of
= \begin{bmatrix}0 & 0 &0\\0 & 0 & 0\\0 & 0 & ab\end{bmatrix}
The determinant of a diagonal matrix
Inverse of a Diagonal Matrix
The inverse of a diagonal matrix can be found by using the following equation.
A^{-1} = 1/|A|\times adj A
Example #9
Let
A = \begin{bmatrix}a & 0 & 0\\0 & b & 0\\0 & 0 & c\end{bmatrix}
From the discussion above we know that the co-factor matrix of A is
= \begin{bmatrix}bc & 0 & 0\\0 & ac & 0\\0 & 0 & bc\end{bmatrix}
Since, matrix
Let
A = \begin{bmatrix}a & 0 & 0\\0 & b & 0\\0 & 0 & c\end{bmatrix}
From the discussion above we know that the co-factor matrix of A is
= \begin{bmatrix}bc & 0 & 0\\0 & ac & 0\\0 & 0 & bc\end{bmatrix}
Since, matrix
adj A = \begin{bmatrix}A_{ij}\end{bmatrix}^T = \begin{bmatrix}bc & 0 & 0\\0 & ac & 0\\0 & 0 & bc\end{bmatrix}
Therefore,
\begin{aligned} &A^{-1} = 1/abc\times \begin{bmatrix}bc & 0 & 0\\0 & ac & 0\\0 & 0 & bc\end{bmatrix}\\\\ &A^{-1} = \begin{bmatrix}1/a& 0 & 0\\0 &1/b& 0\\0 & 0 &1/c\end{bmatrix} \end{aligned}
From the example it is clear that the inverse of a diagonal matrix
‘Example #10
Find the inverse of following diagonal matrix
B = \begin{bmatrix}-3 & 0 & 0 \\0 & 2 & 0 \\ 0 & 0 & 5\end{bmatrix}
Solution :
Given the diagonal matrix
B = \begin{bmatrix}-3 & 0 & 0 \\0 & 2 & 0 \\ 0 & 0 & 5\end{bmatrix}
We simply need to find the inverse of each diagonal element in the matrix
Therefore,
B^{-1} = \begin{bmatrix}-1/3& 0 & 0 \\0 &1/2& 0 \\ 0 & 0 &1/5\end{bmatrix}
Important Points To Remember
Here are some important points to remember.
- diagonal addition and multiplication with another diagonal matrix is commutative.
- diagonal matrix is symmetric.
- power of diagonal matrix is power of individual diagonal entries.
- invertible diagonal matrix has non-zero diagonal entries.
- inverse of a diagonal matrix is a matrix that has inverse of each corresponding element from the diagonal matrix.