Skip to content
Home » Preposition Logic and Problems – III

Preposition Logic and Problems – III

    In this article , you will find common laws for preposition logic. These are very helpful in solving problems like simplifying a complex prepositional statement into a simple one. They also form the basis for arguments which you will learn in future lessons.

    Identity Laws  (1)

     

    p \wedge T \equiv p

     

    p \vee F \equiv p
    p T p and T
    0 1 0
    1 1 1
    p F p or T
    0 0 0
    1 0 1

    Domination Laws (2)

     

    p \vee T \equiv T

     

    p \wedge F \equiv F

     

    p T p or T
    0 1 1
    1 1 1
    p F p and F
    0 0 0
    1 0 0

    Idempotent Laws (3)

     

    p \vee p \equiv p

     

    p \wedge p \equiv p

     

    p p p or p
    0 0 0
    1 1 1
    p p p and p
    0 0 0
    1 1 1

    Double Negation Law (4)

     

    \neg(\neg p) \equiv p

     

    p not p not (not p)
    0 1 0
    1 0 1

    Commutative Laws (5)

     

    p \vee q \equiv q \vee p

     

    p \wedge q \equiv q \wedge p

     

    p q p or q q or p
    0 0 0 0
    0 1 1 1
    1 0 1 1
    1 1 1 1
    p q p and q q and p
    0 0 0 0
    0 1 0 0
    1 0 0 0
    1 1 1 1

    Associative Laws (6)

     

    (p \vee q) \vee r \equiv p \vee (q \vee r)

     

    (p \vee q) \vee r \equiv p \vee (q \vee r)

     

    p q r p or q q or r (p or q) or r p or (q or r)
    0 0 0 0 0 0 0
    0 0 1 0 1 1 1
    0 1 0 1 1 1 1
    0 1 1 1 1 1 1
    1 0 0 1 0 1 1
    1 0 1 1 1 1 1
    1 1 0 1 1 1 1
    1 1 1 1 1 1 1

    Distributive Laws (7)

     

    p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)

     

    p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)

     

    p q r q and r p or (q and r) p or q p or r (p or q) and (p or r)
    0 0 0 0 0 0 0 0
    0 0 1 0 0 0 1 0
    0 1 0 0 0 1 0 0
    0 1 1 1 1 1 1 1
    1 0 0 0 1 1 1 1
    1 0 1 0 1 1 1 1
    1 1 0 0 1 1 1 1
    1 1 1 1 1 1 1 1

    De Morgan’s Laws (8)

     

    \neg( p \wedge q) \equiv \neg p \vee \neg q

     

    \neg( p \vee q) \equiv \neg p \wedge \neg q

     

    p q not p not q not(p or q) not p and not q
    0 0 1 1 1 1
    0 1 1 0 0 0
    1 0 0 1 0 0
    1 1 0 0 0 0
    p q not p not q not(p and q) not p or not q
    0 0 1 1 0 0
    0 1 1 0 1 1
    1 0 0 1 1 1
    1 1 0 0 1 1

    Absorption Laws (9)

     

    p \vee (p \wedge q) \equiv p

     

    p \wedge (p \vee q) \equiv p

     

    p q p and q p or (p and q)
    0 0 0 0
    0 1 0 0
    1 0 0 1
    1 1 1 1
    p q p or q p and (p or q)
    0 0 0 0
    0 1 1 0
    1 0 1 1
    1 1 1 1

    Negation Laws (10)

     

    p \vee \neg p \equiv T

     

    p \wedge \neg p \equiv F

     

    p not p p or not p
    0 1 T
    1 0 T
    p not p p and not p
    0 1 F
    1 0 F