Preposition Logic and Problems – III

In this article , you will find common laws for preposition logic. These are very helpful in solving problems like simplifying a complex prepositional statement into a simple one. They also form the basis for arguments which you will learn in future lessons.

Advertisements

Identity Laws  (1)

 

p \wedge T \equiv p

 

p \vee F \equiv p
p T p and T
0 1 0
1 1 1
p F p or T
0 0 0
1 0 1

Domination Laws (2)

 

p \vee T \equiv T

 

p \wedge F \equiv F

 

p T p or T
0 1 1
1 1 1
p F p and F
0 0 0
1 0 0

Idempotent Laws (3)

 

p \vee p \equiv p

 

p \wedge p \equiv p

 

p p p or p
0 0 0
1 1 1
p p p and p
0 0 0
1 1 1

Double Negation Law (4)

 

\neg(\neg p) \equiv p

 

p not p not (not p)
0 1 0
1 0 1
Advertisements

Commutative Laws (5)

 

p \vee q \equiv q \vee p

 

p \wedge q \equiv q \wedge p

 

p q p or q q or p
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1
p q p and q q and p
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Associative Laws (6)

 

(p \vee q) \vee r \equiv p \vee (q \vee r)

 

(p \vee q) \vee r \equiv p \vee (q \vee r)

 

p q r p or q q or r (p or q) or r p or (q or r)
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

Distributive Laws (7)

 

p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)

 

p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)

 

p q r q and r p or (q and r) p or q p or r (p or q) and (p or r)
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

De Morgan’s Laws (8)

 

\neg( p \wedge q) \equiv \neg p \vee \neg q

 

\neg( p \vee q) \equiv \neg p \wedge \neg q

 

p q not p not q not(p or q) not p and not q
0 0 1 1 1 1
0 1 1 0 0 0
1 0 0 1 0 0
1 1 0 0 0 0
p q not p not q not(p and q) not p or not q
0 0 1 1 0 0
0 1 1 0 1 1
1 0 0 1 1 1
1 1 0 0 1 1

Absorption Laws (9)

 

p \vee (p \wedge q) \equiv p

 

p \wedge (p \vee q) \equiv p

 

p q p and q p or (p and q)
0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1
p q p or q p and (p or q)
0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

Negation Laws (10)

 

p \vee \neg p \equiv T

 

p \wedge \neg p \equiv F

 

p not p p or not p
0 1 T
1 0 T
p not p p and not p
0 1 F
1 0 F
Advertisements

Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.