In linear algebra, matrix inverse holds a special place because there is not division in matrix algebra. You cannot divide two matrices. Fortunately, the division is possible when a matrix is multiplied with its inverse which is unique.

The inverse is not possible with just any kind of matrix, a matrix must be square and invertible and the reasons are explained in this article along with several identities and examples involving inverse matrices.

An inverse matrix can also be used for finding the solution for system of linear equations, that is, where is *augmented matrix,* is the *solution vector *and is the *constant vector.*

### What Is The Need For Inverse?

Inverse means opposite of some operation performed and the result obtained is identity of that operation.

For example,

```
Additive identity
------------------
If then is additive identity.
but
(additive identity)
Therefore, subtraction is inverse operation of addition.
Multiplicative identity
-----------------------
If then is multiplicative identity because it gives as result.
but
( multiplicative identity)
Therefore, multiplying with reciprocal or division is inverse operation of multiplication.
```

The same idea can be extended to matrix since we are unable to divide two matrices directly. If is a square matrix and invertible , then find an inverse matrix such that multiplying it with will give an identity matrix of same order.

For example,

```
Let be a square matrix of order 2 x 2. The inverse of matrix is .
Compute the determinant
Add negative to following elements in matrix
Swap the positive entries
Multiply the above result with
Let us now verify whether
```

### Why Square Matrix ?

The inverse deals with negative power such as , a non-square matrix is cannot be used because it is undefined( cannot multiply).

The second reason for using square matrix is the identity matrix. An identity matrix is a square matrix only. A product of non-square matrix with its inverse will not result in an identity matrix.

If a square matrix has inverse matrix such that

Then the matrix is called **invertible matrix** and matrix is its **inverse**. If there is no for matrix , then it is called **Singular matrix.**

A matrix is singular and has no inverse if its **determinant **is 0. You will learn about determinants in future lessons.

```
Suppose is a singular matrix of order 2 x 2.
In the same manner, determinants of higher order matrices is found.
```

Therefore, only square matrix is used to find inverse which is also a square matrix of size .

### Uniqueness Of Inverse Matrix

If a square matrix is invertible, then it has exactly one inverse.

**Proof :**

Suppose that there are two inverse and for matrix . We get

```
- (1)
- (2)
```

We know that any matrix multiplied by Identity matrix will result itself. Therefore, the following is true.

```
\\by (2)
\\ by associativity property
\\ by (1)
Therefore, inverse is unique.
```

### Use Of Inverse Matrix

The purpose of using matrix is to solve for where represents the **augmented matrix** obtained from the system of linear equations, is the **vector of unknowns or solution vector **and is the **constant vector.**

```
Multiply both sides by . Note that the order of operation is important.
By , we get
```

Let us try to solve a system of equation using above result where matrix is invertible and square. Suppose the system of equations have following equation.

```
```

```
Let be a square and invertible augmented matrix of order 2 x 2 derived from the system of equations above. Therefore, is as follows.
```

Let us find the inverse of matrix . But, first we must find the determinant of matrix .

Change the sign and swap the positive entries. Then multiply it with to get the inverse of matrix .

```
Swap the positive entries.
Multiply with
```

We need to verify if this is correct inverse .

```
```

The inverse is correct and compute the value of solution vector using in the same order.

```
where and
```

We must verify the solution by substitution in the system of linear equations.

```
```

Similarly, we can verify some other interesting results in the following section.

### Other Interesting Results

In this section, we will verify some other interesting results concerning inverse matrices.

**(a) Product of two or more invertible matrices are invertible matrix. **

` //order is important`

**Proof**:

Let and be two invertible matrices of order . Then . If matrix is invertible, then its inverse is .

Therefore,

```
//because
```

**Example #1**

```
Let and be invertible matrix.
Let then
```

We will now find the inverse of the product matrix , that is, . First compute the determinant of matrix.

Now change value of element and to negative in matrix . Then swap the remaining positive values. Multiply the resultant matrix with .

```
```

We must find the product matrix .

```
```

Therefore,

*(b) Inverse of inverse matrix is the original matrix. *

```
Let be a invertible matrix. Let . Therefore, inverse of matrix is the matrix where .
We know that .
Therefore,
```

**Example #2**

```
Let be a invertible matrix.
The inverse of the matrix is
Let us take inverse of inverse matrix
Change signs and swap positive values in
Multily above result with .
```

Therefore, .

**(c) If non-negative power of a invertible square matrix is , then negative power of invertible square matrix is**

**Example #3**

```
Let be a invertible square matrix of order . Let be a positive integer.
Let be the inverse matrix for .
But we know that
```

Therefore, .

(d) If is a non-zero scalar and is invertible square matrix, then

**Proof**:

We know that and also following algebraic identities applies in the case of matrix multiplication with scalars.

```
(1)
(2)
where and are defined matrices.
Using equation we get
Using equation (2)
Using equation (1)
```

Therefore, is true.

**Example #4**

```
Let and matrix is invertible and order 2 x 2.
Multiply with matrix and take inverse.
Take determinant of the matrix
Take negative of and and swap positive values. Multiply with
(3)
We must compute the value of
(4)
(5)
```

**(e)** **If is an invertible matrix of order then the transpose is also invertible and equal to transpose of inverse matrix .**

**Example #5**

```
Let matrix of order .
Inverse of Transpose
Transpose of Inverse
```

Therefore, .

In this article, we explained why and what are inverse of matrix. Next, we discuss how to obtain inverse of small to large invertible matrices using different available methods.