Elementary Row Operations

Earlier we learnt that we can solve for unknown variables by substituting arbitrary values for the equation. You can a_{1}x_{1} + a_{2}x_{2} = b_{1} by solving for x or y one at a time.

Now, a system of equations have m equations which we change into a new system having same solution set but simplified and easy to solve. This is achieved by performing row operations on the augmented matrix.

Row Operations

A row is a linear equation with n unknown variables. You can perform following operations on any row in a system of equations.

  • Multiply a row with a scalar i.e., non-zero constant.
  • Add one row to another row. You are adding matching terms from one row to another.
  • Interchange two rows

Multiply A Row With A Non-Zero Scalar

A = \begin{bmatrix}1 & 3 & 8 \\ 2 & 1 & 1 \\ 7 & 4 & 1\end{bmatrix}

Now, row 1 ( R_{1} ) is \begin{bmatrix}1 & 3 & 8\end{bmatrix} which we multiply by 2.

R_{1} \times 2 = \begin{bmatrix}1 & 3 & 8\end{bmatrix} \times 2

A = \begin{bmatrix}2 & 6 & 16 \\ 2 & 1 & 1 \\ 7 & 4 & 1\end{bmatrix}

Adding One Row To Another Row

A = \begin{bmatrix}1 & 3 & 8 \\ 2 & 1 & 1 \\ 7 & 4 & 1\end{bmatrix}

Row 1 is \begin{bmatrix}1 & 3 & 8\end{bmatrix}
Row 2 is \begin{bmatrix}2 & 1 & 1\end{bmatrix}

Therefore, we can add row 1 to row2 as 
R_{2} = R_{1} + R_{2} = \begin{bmatrix}2 + 1 & 1 + 3 & 1 + 8\end{bmatrix}
R_{2} = R_{1} + R_{2} = \begin{bmatrix}3 & 4 & 9\end{bmatrix}

A = \begin{bmatrix}1 & 3 & 8 \\ 3 & 4 & 9 \\ 7 & 4 & 1\end{bmatrix}

Interchanging Rows

A = \begin{bmatrix}1 & 3 & 8 \\ 2 & 1 & 1 \\ 7 & 4 & 1\end{bmatrix}

Row 1 is \begin{bmatrix}1 & 3 & 8\end{bmatrix}
Row 2 is \begin{bmatrix}2 & 1 & 1\end{bmatrix}

R_{1} \longleftrightarrow R_{2} = \begin{bmatrix}1 & 3 & 8\end{bmatrix} \longleftrightarrow \begin{bmatrix}2 & 1 & 1\end{bmatrix}

A = \begin{bmatrix}2 & 1 & 1 \\ 1 & 3 & 8 \\ 7 & 4 & 1\end{bmatrix}

Solving System Of Linear Equations Using Row Operations

The elementary row operations can be used to solve system of linear equations. For example,

Problem #1 : Solve the following system of equations.
------------------------------------------------------------
2x_1 + 3x_2 + x_3 = 5
5x_1 - 2x_2 + 3x_3 = 6
 x_1 + 2x_2 - x_3 = 2

Solution: 
-------------
First we need to convert the system of equation into augmented matrix. 

A = \begin{bmatrix}2 & 1 & 1 & 4\\ 2 & -2 & 3 & 3\\ 1 & 2 & -1 & 2\end{bmatrix}

-> INTERCHANGE ROW 1 WITH ROW 3

R_3 \longleftrightarrow R_1 = \begin{bmatrix} 1 & 2 & -1 & 2\\ 2 & -2 & 3 & 3\\ 2 & 1 & 1 & 4\end{bmatrix}

-> SUBTRACT ROW 2 FROM ROW 3

R_3 = R_3 - R_2 = \begin{bmatrix}2-2 & 1+2 & 1-3 & 4-3\end{bmatrix}

A = \begin{bmatrix} 1 & 2 & -1 & 2\\ 2 & -2 & 3 & 3\\ 0 & 3 & -2 & 1\end{bmatrix}

-> MULTIPLY R_1 BY 2

A = \begin{bmatrix} 2 & 4 & -2 & 4\\ 2 & -2 & 3 & 3\\ 0 & 3 & -2 & 1\end{bmatrix}

-> SUBTRACT ROW 1 FROM ROW 2

R_2 = R_2 - R_1 = \begin{bmatrix}2-2 & -2-4 & 3+2 & 3-4 \end{bmatrix}

A = \begin{bmatrix} 2 & 4 & -2 & 4\\ 0 & -6 & 5 & -1\\ 0 & 3 & -2 & 1\end{bmatrix}

-> MULTIPLY ROW 3 BY 2

A = \begin{bmatrix} 2 & 4 & -2 & 4\\ 0 & -6 & 5 & -1\\ 0 & 6 & -4 & 2\end{bmatrix}

-> SUBTRACT ROW 2 FROM ROW 3

R_3 = R_2 - R_2 = \begin{bmatrix}2 & 4 & -2 & 4\\ 0 & -6 & 5 & -1\\ 0 & 0 & 1 & 1\end{bmatrix}

Convert the matrix back to system of equations.

2x_1 + 4x_2 + -2x_3 = 4
      -6x_2 + 5x_3 = -1
               x_3 = 1

Now we will use something called back-substitution and find x_1 and x_2.

Given the following
2x_1 + 4x_2 + -2x_3 = 4
      -6x_2 + 5x_3 = -1
               x_3 = 1

Solve for x_2
      -6x_2 + 5(1) = -1
      -6x_2 +  5 - 5 = -1 - 5
      -6x_2  = -6
Therefore, x_2 = 1

Solve for x_1
2x_1 + 4(1) - 2(1) = 4
2x_1 + 4 - 2 = 4
2x_1 + 2 = 4
2x_1 + 2 - 2 = 4 - 2
2x_1 = 2
x_1 = 1

In the next post, we will discuss more about how to solve the system of linear equations using row operations.

Please support us by disabling your adblocker or whitelist this site from your adblocker. Thanks!

turn of adblocker imag